Density-based Adaptive Wavelet Kernel SVM Model for P2P Traffic Classification

نویسندگان

  • Xinlu Zong
  • Chunzhi Wang
  • Hui Xu
چکیده

In this paper an adaptive wavelet kernel based on density SVM approach for P2P traffic classification is presented. The model combines the multi-scale learning ability of wavelet kernel and the advantages of support vector machine. Mexican hat wavelet function is used to build SVM kernel function. The wavelet kernel function is tuned adaptively according to the density of samples around support vectors for several times during the training process. The experimental results show that the presented model can improve classification accuracy while reducing the number of support vectors and has better performance for solving P2P traffic classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network traffic prediction algorithm based on improved chaos particle swarm SVM

Because network traffic is complex and the existing prediction models have various limitations, a new network traffic prediction model based on wavelet transform and optimized support vector machine(ChOSVM) is proposed. Firstly, the network traffic is decomposed to the scale coefficients and wavelet coefficients by non-decimated wavelet transform based on suitable wavelet base and decomposition...

متن کامل

Acoustic Signal based Traffic Density State Estimation using SVM

Based on the information present in cumulative acoustic signal acquired from a roadsideinstalled single microphone, this paper considers the problem of vehicular traffic density state estimation. The occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) are determined by the prevalent traffic density conditions on the road segment. In ...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

SVM Based P2P Traffic Identification Method With Multiple Properties

With the rapid development of the Internet, P2P has become the main network application in the Internet, which consumes most of the network resources. Accurately identifying and making control of the P2P traffic is of great significance. As a mature classification theory, support vector machine (SVM) algorithm is suitable for P2P traffic identification. This paper proposes a SVM based P2P flow ...

متن کامل

A P2P Traffic Identification Approach Based on SVM and BFA

Nowadays new peer to peer (P2P) traffic with dynamic port and encrypted technology makes the identification of P2P traffic become more and more difficult. As one of the optimal classifiers, support vector machine (SVM) has special advantages with avoiding local optimum, overcoming dimension disaster, resolving small samples and high dimension for P2P classification problems. However, to employ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014